Quantitative voxel-to-voxel comparison of TriBeam and DCT strontium titanate three-dimensional data sets

نویسندگان

  • William C. Lenthe
  • McLean P. Echlin
  • Andreas Trenkle
  • Melanie Syha
  • Peter Gumbsch
  • Tresa M. Pollock
چکیده

Recently, techniques for the acquisition of three-dimensional tomographic and four-dimensional time-resolved data sets have emerged, allowing for the analysis of mm volumes of material with nm-scale resolution. The ability to merge multi-modal data sets acquired via multiple techniques for the quantitative analysis of structure, chemistry and phase information is still a significant challenge. Large three-dimensional data sets have been acquired by time-resolved diffraction contrast tomography (DCT) and a new TriBeam tomography technique with high spatial resolution to address grain growth in strontium titanate. A methodology for combining three-dimensional tomographic data has been developed. Algorithms for the alignment of orientation reference frames, unification of sampling grids and automated grain matching have been integrated, and the resulting merged data set permits the simultaneous analysis of all tomographic data on a voxel-by-voxel and grainby-grain basis. Quantitative analysis of merged data sets collected using DCT and TriBeam tomography shows that the spatial resolution of the DCT technique is limited near grain boundaries and the sample edge, resolving grains down to 10 mm diameter for the reconstruction method used. While the TriBeam technique allows for higher-resolution analysis of boundary plane location, it is a destructive tomography approach and can only be employed at the conclusion of a four-dimensional experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

P 24: Evaluation of the Voxel Based Morphometry in Quantitative Analysis of Brain MRI Images

Introduction: Voxel based morphometry is a type of statistical parametric mapping that can be used to investigate the effect of diseases such as epilepsy, Alzheimer's disease and Parkinson's disease or other agent such as skills on brain structure (white matter, gray matter and cerebrospinal fluid). The aim of this study is evaluate the effectiveness of this method in detection of differen...

متن کامل

Quantitative Morphology: Volumes, Shapes and Voxel-Based Measures

Most of the approaches dedicated to automatic morphometry rely on a pointby-point strategy based on warping each brain towards a reference coordinate system. The coordinate system is three dimensional for the comparison of the local densities of grey and white matter (voxel-based morphometry), or two dimensional (spherical) for the comparison of cortical thickness. A more intuitive alternative ...

متن کامل

Conventional Voxel in Tomographic Reconstruction Based upon Plane-Integral Projections – Use It or Lose It?

Introduction: While the necessity of replacing voxels with blobs in conventional tomographic reconstruction based upon line-integrals is clear, it is not however well-investigated in plane- integral-based reconstruction. The problem is more challenging in convergent-plane projection reconstruction. In this work, we are aiming at utilizing blobs as alternative to voxels. <stron...

متن کامل

Development of a free anthropomorphic voxel model of human body for wide-band computational electromagnetics dosimetry

To calculate and evaluate wave scattering and penetration of electromagnetic waves in different biological tissues it is necessary to use a realistic model of the human body, with all tissues resolved and separately assigned with appropriate electric/magnetic properties. We report the development of a realistic 3D whole-body human model that has been adapted for simulation in CST software, cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015